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Summary

An extension to current maximum-likelihood variance-
components procedures for mapping quantitative-trait
loci in sib pairs that allows a simultaneous test of allelic
association is proposed. The method involves modeling
of the allelic means for a test of association, with si-
multaneous modeling of the sib-pair covariance struc-
ture for a test of linkage. By partitioning of the mean
effect of a locus into between- and within-sibship com-
ponents, the method controls for spurious associations
due to population stratification and admixture. The
power and efficacy of the method are illustrated through
simulation of various models of both real and spurious
association.

Introduction

There is an urgent need for the development of methods
for the analysis of the genetic architecture of complex
traits. In particular, methodological developments are
needed for those aspects of risk that are quantitative
rather than qualitative in nature. Recently, several such
methods have been developed, for sib-pair linkage anal-
ysis, that exploit the power of procedures involving max-
imum likelihood, variance-components analysis, and
statistical selection (Amos 1994; Xu and Atchley 1995;
Fulker and Cherny 1996; Almasy and Blangero 1998),
although comparable methodological advances have
been made in the area of association or disequilibrium
mapping only for the case of discontinuous, qualitative
traits (Spielman et al. 1993; Curtis and Sham 1995;
Sham and Curtis 19954, 1995b; Curtis 1997; Sham
1997; Boehnke and Langefeld 1998; Lazzeroni and
Lange 1998). In part, this emphasis on qualitative traits
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has been due to their perceived importance within the
framework of clinical diagnosis. However, there is in-
creasing recognition that for many traits of clinical in-
terest, such as alcoholism, depression, diabetes, obesity,
or hypertension, quantitative phenotypes may be more
informative than diagnostic categories for genetic
analysis.

Most notable of the various methodological advances
made in the area of association or disequilibrium map-
ping for qualitative traits are those techniques based on
the use of parental control groups, such as the trans-
mission/disequilibrium test (TDT; Spielman et al. 1993),
the haplotype-relative risk approach (Terwilliger and
Ott 1992), and, more recently, the development of sim-
ilar procedures that use siblings (Boehnke and Langefeld
1998; Spielman and Ewens 1998). What is lacking is an
attempt to exploit fully the available statistical proce-
dures for the analysis of continuous traits, involving
maximum likelihood and statistical selection, which
have proved to be so effective in sib-pair and related
linkage procedures. Some progress in this direction has
recently been made by Allison (1997) and by Rabinowitz
(1997), who both extended the TDT to deal with con-
tinuous, quantitative measures, although these ap-
proaches are not based on a unified statistical model
that can be readily integrated with linkage tests for quan-
titative-trait loci (QTLs).

In this article, we present a systematic approach to
the use of sib pairs for the simultaneous analysis of both
association and linkage for quantitative traits. The novel
joint analysis of both linkage and association for con-
tinuous traits that we describe is made possible by a
statistical approach unified by the use of maximum like-
lihood and of a common biometrical model for the si-
multaneous analysis of means and covariance matrices.
The utility of sib pairs, for QTL linkage analysis, is well
established and is based on the use of identity (identi-
cal)-by-descent (IBD) relationships among genotypes
(Haseman and Elston 1972). The use of sib pairs for
association analysis and disequilibrium mapping allows
for control of proband selection, in a manner analogous
to the use of parents in the TDT (Spielman et al. 1993).
The use of siblings has the additional practical advan-
tages of (1) avoiding the difficulties of recruiting parents
for the study of late-onset conditions and (2) making
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use of phenotypic measures of siblings who are unlikely
to be of greatly differing ages.

The Likelihood Approach

The methods that we suggest in this article involve
maximum-likelihood modeling of the raw sibship data.
In previous work, we (Fulker and Cherny 1996) and
others have suggested modeling of the full sibship co-
variance structure by maximizing the natural log of the
following likelihood of the data:
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with respect to X; and p, where k is the number of var-
iables (siblings in the single-phenotype case) measured
in family i, E; is the expected covariance matrix among
siblings in family 4, y, is a vector of observed scores
obtained for siblings in family i, g, is the vector of ex-
pected means for family 4, and M is the number of fam-
ilies. In this general expression for the likelihood of mul-
tivariate normal data, the elements of the expected
covariance matrix and/or mean vector can be estimated
directly, or, more usefully, these elements can be made
a function of theoretical parameters of interest. These
theoretical parameters can be tested for statistical sig-
nificance by fitting the model with the parameter or pa-
rameters of interest and obtaining the natural log of the
likelihood of the data, In(L,), and by refitting without
those parameters and obtaining In(L,), the natural log
of the likelihood of the data under the null hypothesis
that the particular parameters are zero. In large samples,
2[In(L,) = In(L,)] is asymptotically distributed as a x>
statistic, with df equal to the number of parameters being
tested. This approach is general for the modeling of
quantitative phenotypes obtained from sibships or ex-
tended families.

In the case of testing for linkage at a particular po-
sition on a chromosome, a sib pair’s expected covariance
matrix, X, would be given by:
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In this expression, o, estimates the variance explained
by the putative QTL, o7 estimates the residual sibling
resemblance (which contains both the environmental
variance shared by siblings and half the additive poly-
genic variance), and o estimates the variance not shared
by siblings in a family. The approach uses 7, the esti-
mated proportion of alleles shared IBD by any pair of
siblings, at a particular chromosomal location. Kruglyak
and Lander (1995) outline an approach for the direct
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use of the probabilities that a pair of siblings share 0,
1, or 2 alleles IBD, with the likelihood of the data com-
puted as a weighted sum of the likelihood assuming 0,
1, or 2 alleles shared. Fulker and Cherny (1996) further
extended this method to the use of the full sib-pair co-
variance structure. Use of any of these likelihood func-
tions, which include provisions for the estimation of
mean effects, in addition to effects on covariance struc-
ture, suggests a straightforward extension for the mod-
eling of the allelic effects of a candidate locus or of a
locus suspected to be in disequilibrium with a trait locus.

The Biometrical Model

Consider a putative QTL with alleles A, and A,, which
occur at frequencies p and q. Let the effects of the three
genotypes A,A,, AA,, and A,A, be —a, 0, and a, re-
spectively. There are nine possible combinations of sib-
pair genotypes (if the order of sibs 1 and 2 is considered;
otherwise, only six unique genotypic combinations are
possible), which, under random mating, are character-
ized by pair means and pair differences, as shown in
table 1.

For a pair of siblings, we can model the expected mean
vector in the likelihood function described above, as a
function of an overall mean 1, the pair mean s,,, and
the pair difference s, as follows: u, = m +s,, + (s,/2)
andu, = m +s,, — (s,/2), with the expectations for these
sib-pair means and differences obtained from table 1.
We then can test association by a 1-df x* test of 2. How-
ever, this test may be prone to spurious associations,
owing to population stratification. Since population
stratification will influence pair means but not pair dif-
ferences, one possible way to avoid spurious associations
is to allow the gene effect a to be different for the pair
means and pair differences. We denote the gene effect
on pair means and pair differences as a, and a,, re-
spectively. The model for sib 1 and sib 2 can then be
seen in table 2. The information in table 2 provides a

Table 1

Expected Sib-Pair Means and Differences and Their Frequencies,
for a Single Additive Two-Allele Locus

GENOTYPE ADDITIVE EFFECT

Sib 1 Sib 2 Sib 1 Sib 2 MEAN DIFFERENCE/2
AA, A A, a a a 0
A A, AA, a 0 al2 al2
AA, AA, a —a 0 a
AA, AA, 0 a al2 —al2
AA, AA, 0 0 0 0
AA, AA, 0 —a —al2 al2
AA, A A, —a a 0 —a
AA, AA, —a 0 —al2 —al2
AA, AA, —a —a —a 0
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Table 2

261

Partitioning of Additive Effect into Between- and Within-Pairs Components

GENOTYPE ADDITIVE EFFECT

Sib1 Sib 2 Sib 1 Sib 2 MEAN  DIFFERENCE/2
AA, AA, a, a, a, 0
AA  AA, (a,/2) + (a,l2) (a,/2) — (a,/2) a,l2 a,l2
AA, AA, a, —a, 0 a,
AA, AA, (a,/2) — (a,l2) (a,/2) + (a,/2) a,l2 —a,l2
AA,  AA, 0 0 0 0
AA,  AA (—a)2) + (a,2) (—a,/2) — (a,/2) —a,l2 a,l2
AA,  AA, —-a, a, 0 —-a,
AA,  AA (—af2) — (a,2)  (—af2) + (a,2)  —a,l2 —a,/2
AA,  AA, —a, —a, —a, 0

general expression for the exponential part of the like-
lihood function in equation (1), as given by

_%(yi -m— Xh,ah - Xw,aw)
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where X, and X,, are diagonal matrices for sib pair i
specified by the coefficients implied in the third and
fourth columns of table 2, a, and a,, are vectors con-
taining the g, and a, parameters, respectively, for each
member of a sibship, and m is a vector containing the
overall phenotypic mean for each member of a sibship
(set equal for all members).

A more robust test for association is obtained by com-
puting the 1-df likelihood ratio x> between a model with
a,, free and that with a,, set to 0, while g, is free in both
models. In the case of a locus that is dominant, the above
models are readily extended to allow a between- and
within-pairs dominance parameter. Furthermore, the
modeling of multiple alleles is a straightforward exten-
sion, although, with the inclusion of dominance param-
eters in such a model, the number of df for the test of
association increases dramatically as the number of al-
leles increases.

In the case of population admixture, the model pre-
sented in table 2 is not strictly correct. Even under an
additive model, the pair (or sibship) means do not follow
this simple relationship of additive allelic effects. This
problem can be overcome by relaxing the constraint on
pair means and modeling the mean of each genotypic
combination as a separate parameter (and then dropping
the grand mean from the model). However, as we illus-
trate below, use of the simple additive model does not
introduce noticeable bias in parameter estimates for the
cases that we have explored.

The Joint Analysis

Because it is based on procedures for estimation of
maximum-likelihood variance components, this new test

of association includes all the advantages of those pro-
cedures. One major advantage is that linkage can (and
should) be modeled simultaneously with the association
parameters. Linkage is modeled in the covariance struc-
ture, as illustrated above, while the association param-
eters, along with other covariates (if desired), are mod-
eled on the means. All parameters would be estimated
as a full model, which would be compared with various
submodels, allowing individual tests of association and
linkage. A simple test of the within-pairs association pa-
rameter would yield a robust test of association while
controlling for stratification. Testing linkage while si-
multaneously modeling association would provide a test
of whether the putative QTL locus is a candidate or
whether it is merely in disequilibrium with a trait locus.
If significant linkage is detected while modeling associ-
ation, one can conclude that the putative locus is not
the functional gene but, rather, is a locus in disequilib-
rium with a trait locus. The method also provides a test
for the presence of stratification. If the a, parameter is
not found to be equal to the g, parameter, one can con-
clude that at least part of the association observed is a
result of population stratification. However, if a,, alone
is still significant, one still can conclude that a true as-
sociation has been found. Because of the variance-com-
ponents model-fitting framework in which we have cast
this method, many other possible hypotheses also can
be tested.

Simulations

Procedures

To illustrate the application and usefulness of the com-
bined approach to the modeling of linkage and associ-
ation in sibship data, we performed a series of simula-
tions involving a dense map of diallelic markers and a
diallelic trait locus. In all cases, we simulated a marker
map of four diallelic anonymous markers, with equally
frequent alleles, that are equally spaced 2 ¢M apart,
thereby spanning a small chromosomal segment 6 ctM
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in length. We chose such a dense map because this would
be typical of a case that might be constructed to finely
map a region that suggests the presence of a QTL. Fur-
thermore, a dense map of diallelic markers that can be
genotyped efficiently and for relatively little cost, by use
of genotyping chips promised to be available soon,
would suggest that the approach we are advocating can
be routinely used in all sib-pair genome scans.

All simulations that we present involved a diallelic
QTL accounting for 20% of the phenotypic variance
(b} = .2) and a sample of 1,000 sib pairs with parental
genotypes available. The proportion of total variance
shared by siblings (but not including QTL variance), ¢,
varied between 0 and .4, and, therefore, the proportion
of variance due to random environmental influences, e,
varied between .8 and .4. For all situations, we simulated
100 samples and present x” statistics that were averaged
across all 100 simulations. These average x* statistics,
minus their associated df, can be considered noncen-
trality parameters for use in power calculations. We ex-
plored a situation that involved disequilibrium between
one of the anonymous markers and the gene influencing
the phenotype, with disequilibrium parameters (D) rang-
ing from small (.025) to complete (.25). In all these cases,
the trait locus was positioned halfway along the 6-cM
chromosomal segment, at 3 ¢M, and was placed in dis-
equilibrium with the second marker (located at 2 ¢cM),
which was 1 ¢cM away from the QTL. In the presence
of linkage equilibrium, the probability of allele 1 of a
marker coupling with allele 1 of a QTL is .5, in the case
for which both the marker and the QTL each have two
alleles of equal frequency, which is the basic case from
which we were working. In simulating disequilibrium,
we altered, from its equilibrium value of .5, the prob-
ability of allele 1 of the marker coupling with allele 1
of the QTL. The disequilibrium was generated in the
parental genotypes, which subsequently had undergone
a single round of random mating to produce the off-
spring that were used for analysis. We also explored the
case in which the QTL genotype itself was available for
analysis, which is equivalent to our case of complete
disequilibrium, except that the disequilibrium was not
diluted by a round of random mating. In the tables pre-
sented below, this is referred to as the “candidate-gene
case.”

The second broad type of situation that we explored
was one of initial admixture of two sib-pair populations,
each containing 500 pairs. We distorted the QTL allele
frequencies from an equal .5:.5 mixture of the two al-
leles, covering the range .55:.45 to .99:.01 in the first
population and using the reverse frequencies for the sec-
ond population. To create disequilibrium, we distorted,
from .5:.5, the allelic frequencies of the second anony-
mous diallelic marker, in a manner similar to but in the
opposite direction of that used for the QTL allele fre-

Am. J. Hum. Genet. 64:259-267, 1999

quencies. We explored all these cases of initial admixture
for the case of a linked QTL at position 3 ¢cM on the
chromosomal segment and for the case of the QTL being
unlinked on another chromosome.

For each of the simulations, we performed a number
of statistical tests. We tested for association while si-
multaneously modeling linkage, by testing the between-
and within-pairs components individually and in com-
bination. When modeling linkage, we computed IBD
along the chromosome, using the Kruglyak and Lander
(1995) multipoint method employed in Mapmaker/SIBS,
and then we computed 7 from the IBD probabilities and
used the variance-components procedure outlined,
which uses . As discussed above, the between-pairs
component should appear in both true and spurious
cases of association. However, the within-pairs com-
ponent should be present only in the case of a true as-
sociation and not in a case due to admixture or strati-
fication. Next, we performed tests of linkage, both while
modeling association and while not modeling associa-
tion. Finally, we performed a combined test of linkage
and association.

Results

In tables 3 and 4 we present average x* statistics ob-
tained from the simulations involving the smallest sibling
correlation, .1, that we explored and in which there was
no additional sibling resemblance beyond that due to
the QTL. Table 3 includes results from simulations in
which the association simulated was a true association.
In the candidate-gene case, there was both a large be-
tween-pairs and a large within-pairs association effect,
as expected. We note that the between-pairs effect is far
more statistically significant and that the x> statistics for
the between- and within-pairs components roughly sum
to the 2-df x* obtained when the two components were
tested simultaneously. As can be seen from the x* ob-
tained when linkage was tested without simultaneous
modeling of association, the linkage effect is substantial
in this case—again, as expected, since the QTL is one
of the markers and the other diallelic markers are quite
close, which is very informative for linkage. The test of
linkage in the presence of association parameters yielded
a x* of ~.5, which is the x* expected under the null
hypothesis, when the statistic is, as in this case, a 50:50
mixture of x* and a point mass of 0. The linkage effect
drops to 0, since all sibling resemblance or lack of re-
semblance can be accounted for by the within-
pairs—component mean model, leaving no covariance to
be explained by the linkage model.

The results for complete disequilibrium, D = .25,
were essentially the same as those for the candidate-gene
case, as expected under the model. As the amount of
simulated disequilibrium diminished, the association x*
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Table 3
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Average x* Statistics Obtained from the Combined Linkage and Association Test,
under Conditions of Real Association: No Additional Sibling Resemblance

? FOR
CA)I:DIDATE- X FoR D =

TesT GENE CASE 25 .20 .10 .05 .025
Association:

Between pairs 320.66 313.82 190.28 45.96 12.87 4.29

Within pairs 122.31 115.46 70.31 17.43 5.16 2.18

Total 435.16 421.55 25793 63.07 17.82 6.29
Linkage:

Without association 6.02 6.14 5.49 4.86 4.84 4.80

With association 22 .20 1.05 3.50 4.42 4.65
Linkage and association 440.19 427.23  263.06 67.69 2242 10.90

NoTE.—Under all conditions, 100 samples of 1,000 sib pairs were simulated. A locus
accounting for 20% of the phenotypic variance was simulated with no additional cause
of sibling covariance, yielding a total sibling correlation of .10. Between-pairs association
was modeled as a single additive deviation. All the x* statistics have 1 df, except those
obtained from testing total association and combined linkage and association, which have
2 df and 3 df, respectively. See text for further details.

statistics decreased. In fact, the x* statistics (minus their
associated df) were proportional to D?, as seen in table
3, since the observed additive effect of the marker is
directly proportional to D. In the more general case,
when the additive system at the QTL is considered, the
average effect (as defined by Falconer [1989]) of the
neutral marker A, resulting from its disequilibrium D
with functional QTL B, will be equal to aD/D,,,, where
D.,.. (the maximum value of the disequilibrium param-
eter, for given marker allele frequencies and any QTL
allele frequencies) is p,g4 the product of the allele fre-
quencies of the marker. This result is true irrespective of
the allele frequencies at the QTL. Thus, for a diallelic
marker with equal allele frequencies, this average effect
is 4Da, as can be seen from the estimates in table 3.

As can be seen in table 3, the test of linkage in the
presence of association becomes more powerful as values
of D decrease, since less of the sibling resemblance due
to the QTL locus is being explained by the association
parameters, leaving linkage to account for the remaining
resemblance, given that the effect of the locus is, in all
the cases, of the same magnitude. In effect, the procedure
partials out the effects of association, from the test of
linkage.

Table 4 presents results from simulations of spurious
association due to admixture of two populations of
equal size. In the case of admixture with a linked locus,
power to detect the between-pairs—association effect di-
minished as a function of the magnitude of the allele-
frequency difference between the two populations, as
expected. However, since the within-pairs component
yields the test of association while controlling for ad-
mixture and stratification, the expected x* is constant
across varying degrees of admixture and near its ex-
pected value of unity. We note that, for the case of ex-

treme admixture, in which the frequency of the decreaser
allele (g) is equal to .99 for 50% of the total population
and g = .01 for the other 50% of the population, the
average x* is noticeably less than its expected value of
unity. This is due to essentially no within-family varia-
bility in genotype, since members within a given family
are almost always all the same genotype. This results in
the within-pairs parameter being empirically underiden-
tified. In practice, however, such an extreme situation
can be easily recognized by the marked departure from
Hardy-Weinberg equilibrium. In all cases of admixture,
the two tests of linkage, one with modeling of associa-
tion and the other ignoring association, both yield sim-
ilar x* statistics, since there is no within-pairs component
removed from the sib-pair resemblance used to test for
linkage.

The second set of simulations in table 4 deal with
admixture, as in the previous set, but the QTL is un-
linked on a different chromosome. This appears to result
in test statistics for the association tests similar to those
obtained in the linked case, but slightly smaller, and the
within-pairs—component x* is almost exactly its expected
value of unity, in all four cases. All the linkage-test sta-
tistics are around their expected value of .5.

In all the simulations presented in both tables 3 and
4, the between- and within-pairs components approxi-
mately add up to the total-association test statistics, im-
plying that these two components are essentially or-
thogonal, and the x* obtained from simultaneous testing
of linkage and association is approximately the sum of
the association x” statistics and the x> from the linkage
test in the presence of association, further implying that
association and linkage are orthogonal tests when mod-
eled together.

Tables 5 and 6 present the results for a set of simu-
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Table 4

Average x* Statistics Obtained from the Combined Linkage and Association Test, under Conditions of Spurious Association and under the
Null Hypothesis: No Additional Sibling Resemblance

x>, AS A FUNCTION OF ADMIXTURE RATIO

2
Linked Trait Locus Unlinked Trait Locus X" UNDER
THE NULL

TEST .99:.01 7.3 .6:.4 .55:.45 .99:.01 .7:.3 .6:.4 .55:.45 HYPOTHESIS
Association:

Between pairs 2,961.20 45.17 4.84 1.52 2,932.20 42.48 3.48 1.07 1.00

Within pairs .19 1.52 1.50 1.40 .07 .98 .94 .96 .79

Total 2,961.20 46.46 6.09 2.70 2,932.20 43.48 4.42 2.04 1.80
Linkage:

Without association 3.83 4.80 4.82 4.75 .70 .53 .58 .58 .58

With association 4.57 5.21 4.77 4.68 .84 .60 .57 .57 .57
Linkage and association 2,964.79 51.02 10.66 7.22 2,932.86 44.02 5.00 2.62 2.39

NoTE.—Under all conditions, 1,000 sib pairs were simulated. A locus accounting for 20% of the phenotypic variance was simulated with
no additional cause of sibling covariance, yielding a total sibling correlation of .10. Between-pairs association was modeled as a single additive
deviation. All the x* statistics have 1 df, except those obtained from testing total association and combined linkage and association, which have
2 df and 3 df, respectively. The cases of admixture involved the mixture of two populations of equal size: for one population, the ratio of p
to g for the two alleles of the diallelic marker locus is given in the column headings, and, for the other population, the ratio is reversed. In

these two populations, the trait locus has allele frequencies opposite to those of the marker locus. See text for further details.

lations that are parallel to those in tables 3 and 4, but
an additional shared-environment component of covar-
iance was introduced, which accounted for 40% of the
total phenotypic variance, resulting in a total sibling cor-
relation of .5. The main difference between the results
in tables 5 and 6 and those in tables 3 and 4 is that the
discrepancy between the between-pairs association x>
and the within-pairs association x* is reduced, to the
extent that the between-pairs and within-pairs x* statis-
tics are almost equal across tables 3 and 5. However,
the combined between- and within-pairs test yielded a
x> similar to that obtained when there was no additional
sibling resemblance. In addition, as expected, the tests
of linkage were more powerful in the presence of ad-
ditional sibling resemblance, when this additional shared
variance reduced the proportion of random environ-
mental variance in the presence of a constant proportion
of QTL variance.

For both sibling correlations, as presented in the last
column of tables 4 and 6, we simulated the null hy-
pothesis of a QTL accounting for 20% of the variance,
but on a chromosome on which no markers were gen-
otyped. Results indicated that each of the between- and
within-pairs components were approximately distrib-
uted as a 1-df x%; that the test of the between- and within-
pairs components together was a 2-df test; that the two
types of linkage tests were a 50:50 mixture of x> and a
point mass of 0, which yielded an expected x> of .5; and
that the simultaneous test of linkage and association
resulted in a x* of ~2.5, the sum of the expected x*
statistics of each of the individual tests.

Table 7 presents mean estimates of the QTL effect
size, a, which, in all cases, was simulated to equal .5.
First, estimates of a4, and a,, for the case of ¢* = .4 were
essentially the same as those for the case of ¢* = 0. In

the candidate-gene case, estimates of a, and a,, were both
quite near their simulated value of .5. In the case of
complete disequilibrium, D = .25, a, was still near .5,
whereas a,, was slightly smaller. This is because the dis-
equilibrium was introduced into the parental chromo-
somes, which subsequently undergo a round of recom-
bination in the formation of gametes. As mentioned
above, for cases of incomplete disequilibrium, the effect
size a is proportional to the amount of disequilibrium.
Our estimates of a, are, in fact, very close to their ex-
pected values. Again, estimates of a, were slightly
smaller, owing to the method by which disequilibrium
was introduced. As expected, estimates of a, decreased
from ~.5 for extreme admixture to ~0 when allele fre-
quencies were not very different between the two sub-
populations, whereas estimates of a,, were essentially 0
throughout, confirming that the within-pairs component
is not present when association is only spurious and due
to admixture.

Discussion

The proposed variance-components model offers a
method of combined QTL linkage and association anal-
ysis for sib-pair data. Most notably, the model partitions
association into between- and within-pairs components,
and a robust test of association is constructed on the
basis of the within-pairs component. In this respect, this
test is similar to the TDT (Spielman et al. 1993) for
diseases and to recent adaptations of the TDT to quan-
titative traits (Allison 1997; Rabinowitz 1997). Our new
approach, however, is based on a variance-components
model, which has many advantages. First, the robust test
of association can be combined with variance-compo-
nents methods of QTL linkage analysis (Fulker and
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Table 5
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Average x* Statistics Obtained from the Combined Linkage and Association Test,
under Conditions of Real Association: Sibling Correlation of .5

? FOR
CA)I:DIDATE- X FoR D =

TesT GENE CASE 25 .20 .10 .05 .025
Association:

Between pairs 232.17 221.79 136.99 34.12 9.95 3.62

Within pairs 213.54 201.42  122.32  29.30 8.07 2.95

Total 443.69 420.78 258.23 63.13 17.71 6.29
Linkage:

Without association 13.02 13.12 11.79 10.55 10.44 10.42

With association S1 .54 2.45 7.70 9.60 10.12
Linkage and association 454.77 433.08 26938 73.31 27.81 16.42

NoTE.—Under all conditions, 1,000 sib pairs were simulated. A locus accounting for
20% of the phenotypic variance was simulated, with an additional ¢* component of .4.
Between-pairs association was modeled as a single additive deviation. All the x* statistics
have 1 df, except those obtained from testing total association and combined linkage and
association, which have 2 df and 3 df, respectively. See text for further details.

Cherny 1996). This combined test should increase the
power of detecting a QTL when the marker locus is not
the QTL itself but is in linkage disequilibrium with the
QTL. Furthermore, if there is appreciable linkage evi-
dence prior to the incorporation of association, then the
extent that this linkage evidence is diminished by the
inclusion of association into the model can be used to
provide an indication of the strength of the linkage dis-
equilibrium between the QTL and the marker. In effect,
modeling of association parameters in the mean struc-
ture partials out any variance accounted for by the alleles
themselves, from the simultaneous test of linkage in the
covariance structure. In cases for which the linkage ev-
idence vanishes entirely, the marker may be the QTL
itself or at least may be in very strong linkage disequi-
librium with the QTL. This phenomenon was demon-
strated clearly in our simulations: as the strength of link-
age disequilibrium increased, the evidence of linkage
diminished, when association was included in the model.

Another interesting observation from our simulations
is that the evidence of linkage increased with an increase
in disequilibrium between the QTL and the marker,
when association was omitted from the model. Our ex-
planation of this phenomenon is that, when both the
QTL and the marker are moderately polymorphic, a
greater degree of linkage disequilibrium would increase
the probability that a parent is heterozygous at both loci
and therefore is informative for linkage. If this expla-
nation is correct, then the effect should diminish as the
heterozygosity of the markers increases or, in a multi-
point analysis, as the number and density of markers
increases. Our simulations have confirmed that this in-
deed is the case.

Our simulations appear to have demonstrated that a
single fixed-effect parameter (a,) is sufficient for mod-
eling of the between-pairs component, in order for the
within-pairs test to be robust to population stratifica-

tion. Although this could have been due to our choice
of admixture parameters for the simulations (i.e., marker
allele frequencies and admixture proportion), an addi-
tional reason could be the inclusion of a parameter for
residual sibling resemblance, ¢, which represents a ran-
dom effect on sib-pair means. Further work is necessary,
to establish whether @, and ¢ are always sufficient or
whether the saturated model for pair means is sometimes
necessary for the within-pairs test to be robust to pop-
ulation stratification.

In our simulations, as the residual sibling correlation
increased (we also simulated an intermediate sibling cor-
relation, which showed intermediate results and, there-
fore, was not presented) with a corresponding reduction
in random environmental variance, the average x> of the
between-pairs component diminished, whereas the av-
erage x> of the within-pairs component increased. Re-
sidual sibling resemblance introduces variation between
sib-pair means, in addition to that introduced by the
QTL. Therefore, increasing residual sibling correlation
may lead to increased confounding between a, and o2,
resulting in a reduction of the power to detect the be-
tween-pairs component. In our simulations, this was re-
flected as an increase in the sampling variance of a,, as
the residual sibling correlation increased. On the other
hand, as we increased the residual sibling correlation,
the nonshared component of variance, ¢?, was corre-
spondingly reduced (since total variance was fixed to
unity), thereby increasing the power to detect the within-
pairs component. In our simulations, this was reflected
as a decrease in the sampling variance of a,, as the re-
sidual sibling correlation increased. Overall, a substan-
tial residual sibling correlation is favorable for the ro-
bust, within-pairs test of association, since it provides a
source of variation that can be explained, thereby re-
ducing error variance.

Consideration of the quantitative, rather than the
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Table 6

Am. J. Hum. Genet. 64:259-267, 1999

Average x* Statistics Obtained from the Combined Linkage and Association Test, under Conditions of Spurious Association and under the

Null Hypothesis: Sibling Correlation of .5

x>, AS A FUNCTION OF ADMIXTURE RATIO

2
Linked Trait Locus Unlinked Trait Locus X" UNDER
THE NULL

TEST .99:.01 7.3 .6:.4 .55:.45 .99:.01 .7:.3 .6:.4 .55:.45 HYPOTHESIS
Association:

Between pairs 2,624.55 34.78 4.28 1.68 2,642.19 32.08 2.71 1.01 .94

Within pairs .62 1.84 1.78 1.62 .02 1.08 .97 1.01 .80

Total 2,624.55 36.14 5.54 2.86 2,642.19 33.14 3.66 2.02 1.78
Linkage:

Without association 10.44 10.00 10.36 10.40 .86 .56 57 .54 .63

With association 10.78 10.17 10.27 10.30 .79 .57 55 .52 .62
Linkage and association 2,634.39 45.66 15.38 12.82 2,643.02 33.70 4.21 2.55 2.44

NoTE.—Under all conditions, 1,000 sib pairs were simulated. A locus accounting for 20% of the phenotypic variance was simulated, with
an additional ¢* component of .4. Between-pairs association was modeled as a single additive deviation. All the x> statistics have 1 df, except
those obtained from testing total association and combined linkage and association, which have 2 df and 3 df, respectively. The cases of admixture
involved the mixture of two populations of equal size: for one population, the ratio of p to g for the two alleles of the diallelic marker locus
is given in the column headings, and, for the other population, the ratio is reversed. In these two populations, the trait locus has allele frequencies

opposite to those of the marker locus. See text for further details.

qualitative, effects of association through disequilibrium
shows very clearly that effect sizes are always underes-
timated (within sampling error) and that they syste-
matically depend on the level of disequilibrium. For ex-
ample, for weak disequilibrium (e.g., D = .05, for a
diallelic marker with equal allele frequencies) the max-
imum effect associated with the marker is one-fifth the
QTL effect. This implies that effect sizes determined
from association studies potentially are much smaller
than the actual effect the functional gene may have on
the phenotype of interest. For instance, in a recent report
of an association between the insulin-like growth fac-
tor—2 receptor and cognitive ability, Chorney et al.
(1998) estimated that this locus accounts for 2% of the
phenotypic variation. However, given that the disequi-
librium between the functional gene influencing cogni-
tive ability and the gene with which it is associated is
not complete, the variance explained by the as-yet-un-
known gene could be substantially larger.

Although we have illustrated the proposed simulta-
neous test of association and linkage for sibships of size
two and a single diallelic candidate or marker locus, the
method can be generalized to larger sibships and sibships
of variable size within a study and, in addition, to can-
didate or marker loci with multiple alleles that each con-
vey different quantitative effects on the phenotype or
marker loci with multiple alleles that are differentially
associated with the alleles at a trait locus. In brief, to
accommodate sibships of variable size, the sibship means
are modeled as in the sib-pair case for the between-pairs
effect, and individual sibling deviations from the sibship
mean are modeled as for the within-pairs effect (in place
of half the difference score). For multiple alleles and
dominance, a between- and within-sibship parameter

would be specified for each allele, under the constraint
that they sum to zero, and a between- and within-sibship
dominance parameter would be specified for each het-
erozygote type. However, this would result in a test with
multiple df, thereby reducing power. Alternatively, if, for
example, allele size (i.e., the number of repeats) has a
potential linear or quadratic effect on a phenotype, such
effects also could be accommodated within the frame-
work we propose, in a powerful manner. However, the
statistical properties of such situations should be ex-
plored thoroughly, both analytically and via simulation,

Table 7
Average Parameter Estimates Obtained from All Simulations
=0 c=.4
a, a, a, a,
Candidate-gene case .504 499 .506 499
D =:
25 499 486 498 486
.20 400 .388 400 .388
.10 202 .193 201 194
.05 .103 .096 .103 .096
.025 .052 .047 .052 .048
Admixture ratio (linked):
.99:.01 490 —.001 489 —.000
.7:.3 172 .004 172 .003
.6:.4 055 .003 .055 .001
.55:.45 .017 .002 .017 .000
Admixture ratio (unlinked):
.99:.01 490 —.002 490 —.003
7.3 168 .003 168 .002
.6:.4 .047 .000 .045 —.000
.55:.45 .009 .001 .008 .000
Null hypothesis .000 —.008 .000 —-.007
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before they are applied, which is beyond the scope of
this article.

In this article, we have discussed the foundations of
a variance-components approach to combined linkage
and association analysis of quantitative traits. We also
have established, by means of simulations, some basic
properties of the methodology. The proposed variance-
components model provides a flexible and powerful
framework for further generalizations and extensions.
For example, the model can be generalized to multiple
phenotypes and can be made to incorporate measured
covariates as well as gene-environment interactions. Fur-
thermore, the analysis of selected samples can be ac-
commodated in the maximum-likelihood framework
simply by incorporating an ascertainment correction in
the likelihood function or by imposing appropriate con-
straints on the parameters. These further developments
should lead to a set of powerful tools for the detection
of QTLs and the dissection of complex quantitative traits
in humans.
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